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THE DYNAMIC VISCOPLASTIC EXPANSION
OF A CYLINDRICAL TUBE

by

Edmund J. Appleby

ABSTRACT

The viscoplastic flow of a long thick-walled tube is in- ‘
vestigated. The tube is subjected to internal pressure and has its
ends restrained from motion in the axial direction. The material
of the tube is rigid-viscoplastic and incompressible. The pressure
required to produce a specified expansion of the tube is calculated
% for two examples. In the former the effect of different viscosity
coefficients is observed. In the latter example a comparison is
made of the effects of perfect plasticity, viscosity and inertia.




. INTRODUCTION

A study is made of the mechanical behavior of a long hollow circular
cylinder, with its end restrained from motion in the axial direction, when
it is subjected to internal pressure. The basic problem of plane strain
with rotational symmetry, being one of those which most readily yieid to
treatment in plasticity, is a standard problem in this field, and has been
studied by investigators in a variety of different ways for the ideally
plastic and the elastic plastic material. Reviews of such solutions have
been given by Hill (1] , and Prager and Hodge [ 2]. The present paper
considers an ideal material, a viscoplastic Bingham solid [ 3], which
is undeformable until the stresses reach their yielding values, and then
under stresses which are in excess of their yielding values, has strain
velocities dependent on this stress excess or overstress. The material
does not exhibit work hardening, and as it is known that in the fully
plastic state volume changes are negligible, it is assumed to beincom-

pressible.

The solution is obtained by using the viscoplastic constitutive
equations due to Hohenemser and Prager [4] . The analysis is valid for
a general plastic yield condition. An approach by means of a linearized
theory of viscoplasticity, in which the flow is specified by Prager's constitu-

tive equation [5] , is equivalent.

A general solution is formulated, but in order to simplify the numeri-
cal calculations a specific expansion is imposed on the tube in which the
interior boundary has a uniform radial acceleration. The pressure-time
variations required to maintain this flow for different viscosity coefficients

are compared. A different expansion is then imposed, in which the inner



radius of the tube expands to one and one half its initial size, beginning
and ending with zero velocity. Comparison is made of the effects of
perfect plasticity, viscosity and inertia. If the expansion takes place
slowly, the effect of inertia on the required pressure is negligible,

and the effects of perfect plasticity and viscosity are comparable. On
the other hand if the expansion occurs very quickly the effect of inertia
becomes comparable with that of viscosity, and the perfectly plastic

contribution to the pressure is negligible.



2. BASIC EQUATIONS

Let the space variables be a system of cylindrical co-ordinates
ry 0, z in which the z-axis coinc;des with the axis of symmetry, then
the tube is bounded by the cylinders r =a and r =b, where a < b.
As the pressure inside the tube increases, the stresses in the material
nearest the interior boundary will be the first to reach the yield limit.
With further increase of pressure the plastic region will extend until
its outer boundary coincides with the tube's outer surface. Until this
state is reached, the flow of the plastic innermost region of the tube
is restricted by a surrounding rigid region and by the conditions of axi-
ally symmetric plane strain on the incompressible material. The whole
tube therefore remains rigid, and hence the stresses in the innermost
plastic region reach but do not exceed the yield limite. When the whole of
the tube becomes plastic, the material is about to flow in an unrestricted
manner, since any further increase in the internal pressure will then
produce overstress in the material of the tube, The time t is measured
from this instant, and the values of a and b for t =<0 are denoted by
a, and bo. | |

It is assumed that the tube is sufficiently long to make the stresses
aLﬁd strains independent of the axial co-ordinate, and that at any instant of
the flow process each particle of the tube is moving radially outward
with a velocity u which depends only onthe radial co-ordinate r. The
velocity components at a point distance r from the axis at time t are

then

ur=u(r.t). ug = 0, u, = 0. (1)



The strain rates are

' (2)
70z'=0. yzrﬂo '] 7r0=°

where the dot denotes differentiation with respect to the time.

Since the material is assumed incompressible

St @

This differential equation has the solution

u= < (4)

in which ¥(t) is an arbitrary function of the time. Expressing the
velocity u of a particle, distance r from the axis at time t as

dr/dt, and integrating (4), we find that a particle initially at distance
Ty from the axis is at distance ’Jro + 2¥%(t) after a time t.

The radial and circumferential strain rates can now be written

(5)
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By the rotational symmetry of the flow field, the sheé,ring
stresses with respect to the cylindrical co-ordinates are zero, so

the only equation of motion which is not identically satisfied is

90 g_ -0,
T-: + rra =D§';'l » (6)

where D is the density of the material. When u is replaced by the

expression in (4), the above equation can be written
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The boundary conditions throughout the yielding process are

g.=-p at r = a,

(8)

o

r o at r =b;

it being assumed that there is no pressure on the external boundary.

The analysis so far is independent of the constitutive equations,

and is the same for all materials.

For any incompressible isotropic material in plane strain Geiringer
[ 6] has shown that a general yield condition can be ekpreséed asa
function of the single variable 0y -0, 0y and o, being the principle
strésses in the plane z = const. For the rotationa.llyAaymmetric pro-
blem the principle stresses are o, and 0,, so that the yield function

F can always be written in the form
F: b'o -O’rl-Zk, (9)

where k is.the yield stress in shear. In particular if Og=0 s
an assumption which may be verified a_posterior, (9) can be i'éplaced
by

F=o0, - o, - 2k (1,0)' .

- The viscoplastic flow rule of Hohenemser and Prager can be written in

the general form

A€, = <F>g-§ . (11)

where the notation is defined by:



<F>=FifFZO.
<F>=0 i{F<O,

A is the viscosity coefficient of the material, and F is the yield
function. For the yield function (10), therefore, the only nonvanish-

ing strain rate components for t> 0 are given by

Ae = '('70 -0 - 2k) , rAg =0, -0, - k. (12)

It is inteiesti.ng to nbte that since (10) is a linear function, (12)
may also be obtained as a special case of the piecewise-linear visco-

plastic flow law proposed by Prager [5] .



3. SOLUTION
Equatidns (12) can alternatively be written

_.z.“' = og- o -2k (13)
o

The substitution of equation (13) into the equation of motion (7) gives

do : -~
ﬁL=.?.‘ v 2+ 2 w!zz] . (14)
o r

Integrating this equation with respect to r, and employing the bound-
ary condition, 0. = 0 when r = b, to evaluate the arbitraryfunction

of time furnishes the stress components:

- -z-
[ l l
ar=2klog§ +D‘l'log§+-7-‘z!L-z— --—Z] -l_—); L-lz "'12}'
r b r \
% =Zk[1+log §}+ Dalogé + A;—[% + -lz] - %‘-"—Z[—lz - -IZE‘.
: b r b r

(15)

Since a and b can be expressed in terms of their initial values

a, and bo and the function ¥ (t), equations(15) furnish the stress
distribution at any instant in terms of ¥ and its first and second
derivatives. The functions ¥ and p must satisfy the boundary con-

dition o.=-ponr = a. Hence, by using the expression

r = 'Jr + 2%,

0
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. a’gt2¥l ,ylag-by) ¥¥p(bg- 2"y
¥Dlog| — t = z t 2 Z

b7y + 2¥ (2% + 2¥) (b7, + 29) (a"g +29) (b" )+ 29)

2 (16)
= - 2p - 2k log 2 0{'2‘p H

bo+2\l',

the conditions at t = 0 being ¥= 0 and ¥=0, that is N rZ + 2%
0

is initially r, and the initial radial velocity is zero.
If the effects of inertia and viscosity had been neglected,
the left hand side of equation (16) would be zero, and hence p = k log
[1+ (b?'o - azo)laz] » which is the internal pressure required in the
case of an ideally plastic tube to maintain it in a state of unrestricted
flow (cf. [2], page 118). If, on the other hand, the inertia term alone
is neglected and p is regarded as a constant internal pressure,
equation (16) gives a formula for ¥ in terms of ¥ which does not

contain t explicitly, namely

o 2%, + 29) (2, + 29) | a® + o
A(bo-ao) O+Z‘l"

Integration of equation (17) by means of several substitutions yields

Ly

2 2
bo-aoexp(x)

bl 1 73 ) 2 3 el >
, b [
where x ‘=£—-[l - exp (kt/A)] + exp (kt/A) log :zg- . (18)

0

J .

The fields of radial velocity and radial and circumferential |
st:ain rate can nov.v be written down from ec{uaﬁons (4) and (5)« The
stress field is obtained by substituting for ¥ and ¥ as functions of
the time in the following equations:






4. COMPARISON OF THE VISCOUS EFFECT FOR DIFFERENT
VISCOSITY COEFFICIENTS

It will now be assumed that p varying with the time, is the
internal pressure required to keep the expanding tube flowing un-
restrictedly in a certain manner. In order to simplify the problem
the condition that the interior boundary of the tube expands with a un-
iformly increasing speed is imposed. The pressure p(t) which is
required to produce this effect is found. The expansion of a is of
the form

a=a)+ ctz, (20)

where c is a positive constant. The function ¥(t) is found to

satisfy
2% = it + 2ay o?,
giving ¥ = 2ct (ao + ctz) ’ r (21)
' 2
.and V= 2¢ (ao + 3ct™).

Omitting details of the calculation, we find that equation (16) now

furnishea
2 ,
-1 2 (" - 1)
R | (3h"+1) 0
Fh) = log l+——z-z + —z—log 1+ 2
2‘ (1+h°) E | (14 hz)
(1 '“Zo)hz A 1 (l-lzo)h ,
(a('fo+ h4. + th) ' 2.E-“(,‘z(ﬁ h4+ th) (1+hz)
(22)

where “ bolao.

h =t (c/ao)%. a dimensionless time,

10
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and P (h) =p(t)/2k, the dimfpsionless pressure. Also R and B
are two dimensionless parameters analogous to the Reynolds number

and the Bingham number and defined by
i i
R = > aoc 1 B= k .io.
—— \T] 3 e -

For the present purpose it will be more convenient to utilize less signi-

ficant parameters defined by

D
RP = —raoc » BP =-z%- (%—) (23)

The pressure can then be written

2 ' 2
(- 1) 2 (= 1)
1 0 (3n°4+1) [
P(h)=< log|l+ 2] + R log l+—-z-2+
Z (1 +1h%) P| 2 (1 +1h°)
2
(1 -xg )b g (-«@)h
z .4 2 "% T2
(g +h" + 2h7) (.‘0+h4+zhz)(1+hz)
(24)

Equation (24) gives the dimensionless pressure required to produce an
unrestricted flow of the tube in which the interior boundary has a uniform

acceleration. The stress field is then given by:

2_ 2.2y
=< Liog +(p-z—T° % +R —z-—("'hz+ D 1og |1+ 29——4—-—2’—(') “!
& " (xyth +.Zh2) P (“0+h +2h

- h; (tlzn f (poz. - o.oz)
(qoz+h4+2hz) 62+h4+ znz) o
' . (25)
.+ Bph (1 + ha (po - a,

. v
(102 + h4 + 2117) (poz + h4 + th)




12

2 2
g (P ot q) 2
z-lg=l+2l-logl+ Zo 40 ) +Rs—3§-—ﬂ)103
(ag+h™ +2n°) :
2 2
(0%, - o)) n2m2e1)? 0% -y
4 ] - T3 Z ¢ .4
(«p+h* +20%) (g +h + 2h°) (p%y+h +2h9
+ B_‘h(l+h%(pZ +«2 + 2nt +4hz)
b 0t
T i 1.z (25)
lgth™+207) (p°5 +h™ + 2h")
and the velocity field u is found to satisfy
u'?'=4r(l+hz)2 a chz. (26)
7 -3 z 0
(p°+h + 2h")

where Po = ro/ao.
- As estimate of the effect of viscosity on plastic flow of the
type specified above was obtained from equation (24). The numeri-
cal values used in the investigation were as follows in c. g. 8. units:
3 = 5:%= 2, ¢=0.1; D=8.5; and k = 23.5 x 981 x 105, appropri-
ate for a thick walled brass (Zn 30 percent, Cu 70 percent) tube. The
viscosity coefficient of the metal in these units would be of order 1010.
Two values A =5 x 1010 and A= 1011 were chosen, and the results
compared with that for A = 0 corresponding to zero viscosity. With the
above parameters the second term in (24), the inertia téi;m. beco;.es
comparable with the other terms only in thé final stage of yielding, and
for all practical purposes is negligible. The variations of the dimension-
less pressure with dimensionless time,for the three assigned values
of the viscosity, are shown in Fig. 1. It is seen that the viscosity has
a considerable effect during the initial stages of the yield process, and that

in order to maintain the same yield with greater viscosity, the initial rate
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of loading must be correspondingly increased. The required pressure
attains its maximum and may be allowed to decrease at a rate more
nearly comparable with the rate of unloading in the nonviscous case.
In each case the required pressure approaches zero asymptotically
with increasing time, as rhight be expected in the absence of fracture,

since the thickness of the tube is steadily decreasing.



5. COMPARISON OF PLASTIC, VISCOUS AND INERTIA EFFECTS

It is also of interest to compare the effects of perfect plasticity,
viscosity, and inertia on the expanding tube. For this purpose an

expansion

a =(ay/4) [ 5+ sin(wt - 7/2) (27)

of the inner radius of the tube is imposed during the time interval

t=0 to t=n/w When t=0, a= a, and da/dt = 0; when t = (7/w),
as= 3a0/2 and da/dt = 0. See Fig. 2. Hence (27) corresponds to an
expansion of the inner radius to one and a half times its initial value in
a time T= 7w, starting and finishing with zero velocity. It can then

easily be shown that
2

2
Z
= 20 5+sin{wt -
'TZ' '2_‘ ’
al, v 10a%, @

\i'=1g—— sin Z(wt-z—) -—;z—()——cos(wt-%.

. azo o r 10 azowz r

v=—"'r6-— cos 2<wt“2' - Tsin@t-f L]

(28)

The pressure variation needed to produce expansion (27) can be written

as

p__(_s) = pp(t) + Pi(t) + Pv (t) , (29)
2k

where PP (t), PI (t) and Pv(t) are the contributions due to perfect

plasticity, inertia, and viscosity respectively, and given by

14
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- b2, + 2% l
P(t)=-§-log _2_0__ ’
P ao+21f

2 .
o |- %y + 29 (bzo ) azo) x
P (t) = ¥ log Z -
1 ik a“, +2¥ Z A
0 (a o * Z\lv)(b A +zv)

~—

.

Pyt) = A (b'zo i azo)" _

2 (a5 +2v)(b5y+ 29) J
, (30)

The numerical values of ag bo. D and k are chosen the same
as previously. The value of A is now fixed at 5 x 1010. By varying
w the expansion can be made to take place in any desired time. Three
values of w were chosen. These correspond to an expansion of the tube
in 1 sec., 10'6 sec., and 10-7 sec. respectively. The pressure
variation with time required to produce the expansion was calculated
in each case from equations (28) through (30). The dimensionless pres-
sure contributions PP’ PI’ and Pv were plotted against t in each case.
When T =1, corresponding to a slow expansion, inertia has a negligible
effect on the pressure required, but the perfectly plastic and viscous
contributions to this pressure are of the same order. See Fig. 3.
When T = 10"6 the required pressure is considerably increased and
the perfectly plastic contribution is a negligible part, but the inertia ef-

fect begins to be apparent. See Fig. 4. For T = 10'7 the inertia term

in p(t)/2k has a considerably greater effect (see Fig. 5).

It is noted that Figs. 4, 5 show that a negative pressure is re-
quired near the end of the period to produce the required expansion. By
referring to equations (14), (15) and (16) it is seen that p can be replaced

by a pressure (Pi - Pe). where p; and p_ are an internal pressure and



an external pressure respectively. Thus, imposing a negative value
of the pressure p is exactly equivalent to an application of external

pressure and hence is physically possible.

The order of magnitudes invnlved in PV and }""I is apparent
from equations (28) and (30). When the time of expansion T is altered
by some factor K , the viscous pressure contribution is altered

by a factor k!

» and the inertia contribution by a factor K-Z; the
perfectly plastic pressure contribution is, of course, independent of
T. For the type of problem considered, this shows an interesting
comparison over the full range of éxpansion times of the three effects
mentioned. In a slow expansion the flow approximates that of the plastic
quasi-static theory in which the strain rates are very small and the
inertia effects are neglected. As the speed of expansion increases
the viscous effect becomes important and then dominant, whereas

the inertia effect is still negligible. For even faster expansions

the effect of inertia becomes important and finally predominates.
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